
A Firm Foundation for Private Data Analysis

Cynthia Dwork
Microsoft Research

dwork@microsoft.com

1. PRIVATE DATA ANALYSIS
In the information realm, loss of privacy is usually associ-

ated with failure to control access to information, to control
the flow of information, or to control the purposes for which
information is employed. Differential privacy arose in a con-
text in which ensuring privacy is a challenge even if all these
control problems are solved: privacy-preserving statistical
analysis of data.

The problem of statistical disclosure control – revealing ac-
curate statistics about a set of respondents while preserving
the privacy of individuals – has a venerable history, with an
extensive literature spanning statistics, theoretical computer
science, security, databases, and cryptography (see, for ex-
ample, the excellent survey [1], the discussion of related work
in [2] and the Journal of Official Statistics 9 (2), dedicated
to confidentiality and disclosure control). This long history
is a testament the importance of the problem. Statistical
databases can be of enormous social value; they are used for
apportioning resources, evaluating medical therapies, under-
standing the spread of disease, improving economic utility,
and informing us about ourselves as a species.

The data may be obtained in diverse ways. Some data,
such as census, tax, and other sorts of official data, are com-
pelled; others are collected opportunistically, for example,
from traffic on the internet, transactions on Amazon, and
search engine query logs; other data are provided altruis-
tically, by respondents who hope that sharing their infor-
mation will help others to avoid a specific misfortune, or
more generally, to increase the public good. Altruistic data
donors are typically promised their individual data will be
kept confidential – in short, they are promised “privacy.”
Similarly, medical data and legally compelled data, such as
census data, tax return data, have legal privacy mandates.
In our view, ethics demand that opportunistically obtained
data should be treated no differently, especially when there
is no reasonable alternative to engaging in the actions that
generate the data in question.

The problems remain: even if data encryption, key man-
agement, access control, and the motives of the data curator

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
Copyright 200X ACM X-XXXXX-XX-X/XX/XX ...$5.00.

are all unimpeachable, what does it mean to preserve pri-
vacy, and how can it be accomplished?

1.1 “How” is Hard
Let us consider a few common suggestions and some of

the difficulties they can encouter.
Large Query Sets. One frequent suggestion is to disal-

low queries about a specific individual or small set of indi-
viduals. A well-known differencing argument demonstrates
the inadequacy of the suggestion. Suppose it is known that
Mr. X is in a certain medical database. Taken together,
the answers to the two large queries “How many people in
the database have the sickle cell trait?” and “How many
people, not named X, in the database have the sickle cell
trait?” yield the sickle cell status of Mr. X. The example
also shows that encrypting the data, another frequent sug-
gestion (oddly), would be of no help at all. The privacy
compromise arises from correct operation of the database.

In query auditing each query to the database is evaluated
in the context of the query history to determine if a response
would be disclosive; if so, then the query is refused. For ex-
ample, query auditing might be used to interdict the pair of
queries about sickle cell trait just described. This approach
is problematic for several reasons, among them that query
monitoring is computationally infeasible [15] and that the
refusal to respond to a query may itself be disclosive [14].

We think of a database as a collection of rows, with each
row containing the data of a different respondent. In sub-
sampling a subset of the rows is chosen at random and re-
leased. Statistics can then be computed on the subsample
and, if the subsample is sufficiently large, these may be rep-
resentative of the dataset as a whole. If the size of the
subsample is very small compared to the size of the dataset,
this approach has the property that every respondent is un-
likely to appear in the subsample. However, this is clearly
insufficient: Suppose appearing in a subsample has terrible
consequences. Then every time subsampling occurs some
individual suffers horribly.

In input perturbation, either the data or the queries are
modified before a response is generated. This broad cate-
gory encompasses a generalization of subsampling, in which
the curator first chooses, based on a secret, random, func-
tion of the query, a subsample from the database, and then
returns the result obtained by applying the query to the sub-
sample [4]. A nice feature of this approach is that repeating
the same query yields the same answer, while semantically
equivalent but syntactially different queries are made on es-
sentially unrelated subsamples. However, an outlier may
may only be protected by the unlikelihood of being in the

subsample.
In what is traditionally called randomized response, the

data themselves are randomized once and for all and statis-
tics are computed from the noisy responses, taking into ac-
count in the distribution on the perturbation [22]. The term
“randomized response” comes from the practice of having
the respondents to a survey flip a coin and, based on the
outcome, answering an invasive yes/no question or answer-
ing a more emotionally neutral one. In the computer sci-
ence literature the choice governed by the coin flip is usu-
ally between honestly reporting one’s value and responding
randomly, typically by flipping a second coin and reporting
the outcome. Randomized response was devised for the set-
ting in which the individuals do not trust the curator, so
we can think of the randomized responses as simply being
published. Privacy comes from the uncertainty of how to in-
terpret a reported value. The approach becomes untenable
for complex data.

Adding random noise to the output has promise, and we
will return to it later; here we point out that if done näıvely
this approach will fail. To see this, suppose the noise has
mean zero and that fresh randomness is used in generating
every response. In this case, if the same query is asked re-
peatedly, then the responses can be averaged, and the true
answer will eventually emerge. This is disastrous: an adver-
sarial analyst could exploit this to carry out the difference
attack described above. The approach cannot be “fixed” by
recording each query and providing the same response each
time a query is re-issued. There are several reasons for this.
For example, syntactically different queries may be seman-
tically equivalent, and, if the query language is sufficiently
rich, then the equivalence problem itself is undecidable, so
the curator cannot even test for this.

Problems with noise addition arise even when successive
queries are completely unrelated to previous queries [5]. Let
us assume for simplicity that the database consists of a sin-
gle – but very sensitive – bit per person, so we can think
of the database as an n-bit Boolean vector d = (d1, . . . , dn).
This is an abstraction of a setting in which the database
rows are quite complex, for example, they may be medi-
cal records, but the attacker is interested in one specific
field, such as HIV status. The abstracted attack consists
of issuing a string of queries, each described by a subset
S of the database rows. The query is asking how many
1’s are in the selected rows. Representing the query as
the n-bit characteristic vector of the set S, with 1’s in all
the positions corresponding to rows in S and 0’s every-
where else, the true answer to the query is the inner prod-
uct A(S) =

∑n
i=1 diSi. Suppose the privacy mechanism

responds with A(S) + random noise. How much noise is
needed in order to preserve privacy?

Since we have not yet defined privacy, let us consider the
easier problem of avoiding blatant “non-privacy,” defined as
follows: the system is blatantly non-private if an adversary
can construct a candidate database that agrees with the real
database D in, say, 99% of the entries. An easy consequence
of the following theorem is that a privacy mechanism adding
noise with magnitude always bounded by, say, n/401 is bla-
tantly non-private against an adversary that can ask all 2n

possible queries [5]. There is nothing special about 401; any
number exceeding 400 would work.

Theorem 1. [5] Let M be a mechanism that adds noise
bounded by E. Then there exists an adversary that can re-

construct the database to within 4E positions.

Blatant non-privacy with E = n/401 follows immediately
from the theorem, as the reconstruction will be accurate in
all but at most 4E = n · 4

401
< n/100 positions.

Proof. Let d be the true database. The adversary can
attack in two phases:

1. Estimate the number of 1’s in all possible sets:
Query M on all subsets S ⊆ [n].

2. Rule out “distant” databases: For every candidate
database c ∈ {0, 1}n, If, for any S ⊆ [n], |

∑
i∈S ci −

M(S)| > E, then rule out c. If c is not ruled out, then
output c and halt.

Since M(S) never errs by more than E, the real database
will not be ruled out, so this simple (but inefficient!) algo-
rithm will output some database; let us call it c. We will
argue that the number of positions in which c and d differ
is at most 4 · E.

Let I0 be the indices in which di = 0, that is, I0 = {i | di =
0}. Similarly, define I1 = {i | di = 1}. Since c was not
ruled out, |M(I0) −

∑
i∈I0

ci| ≤ E. However, by assump-

tion |M(I0) −
∑

i∈I0
di| ≤ E. It follows from the triangle

inequality that c and d differ in at most 2E positions in I0;
the same argument shows that they differ in at most 2E
positions in I1. Thus, c and d agree on all but at most 4E
positions.

What if we consider more realistic bounds on the num-
ber of queries? We think of

√
n as an interesting threshold

on noise, for the following reason: if the database contains
n people drawn uniformly at random from a population of
size N � n, and the fraction of the population satisfying a
given condition is p, then we expect the number of rows in
the database satisfying p to be roughly np±Θ(

√
n), by the

properties of the hypergeometric distribution. That is, the
sampling error is on the order of

√
n. We would like that

the noise introduced for privacy is smaller than the sampling
error, ideally o(

√
n). Unfortunately, noise of magnitude

o(
√
n) is blatantly non-private against a series of n log2 n

randomly generated queries [5], no matter the distribution
on the noise. Several strengthenings of this pioneering re-
sult are now known. For example, if the entries in S are
chosen independently according to a standard normal dis-
tribution, then blatant non-privacy continues to hold even
against an adversary asking only Θ(n) questions, and even
if more than a fifth of the responses have arbitrarily wild
noise magnitudes, provided the other responses have noise
magnitude o(

√
n) [8].

These are not just interesting mathematical exercises. We
have been focussing on interactive privacy mechanisms, dis-
tinguished by the involvement of the curator in answering
each query. In the noninteractive setting the curator pub-
lishes some information of arbitrary form, and the data are
not used further. Research statisticians like to “look at the
data,” and we have frequently been asked for a method of
generating a “noisy table” that will permit highly accurate
answers to be derived for computations that are not specified
at the outset. The noise bounds say this is impossible: no
such table can safely provide very accurate answers to too
many weighted subset sum questions; otherwise the table
could be used in a simulation of the interactive mechanism,

and an attack could be mounted against the table. Thus,
even if the analyst only requires the responses to a small
number of unspecified queries, the fact that the table can be
exploited to gain answers to other queries is problematic.

In the case of “internet scale” data sets, obtaining re-
sponses to, say, n ≥ 108 queries is infeasible. What hap-
pens if the curator permits only a sublinear number of ques-
tions? This inquiry led to the first algorithmic results in
differential privacy, in which it was shown how to maintain
privacy against a sublinear number of counting queries, that
is, queries of the form “How many rows in the database sat-
isfy property P?” by adding noise of order o(

√
n) – less than

the sampling error – to each answer [11]. The cumbersome
privacy guarantee, which focused on the question of what
an adversary can learn about a row in the database, is now
known to imply a natural and still very powerful relaxation
of differential privacy.

1.2 “What” is Hard
Newspaper horror stories about “anonymized” and “de-

identified” data typically refer to non-interactive approaches
in which certain kinds of information in each data record
have been suppressed or altered. A famous example is AOL’s
release of a set of “anonoymized” search query logs. Peo-
ple search for many “obviously” disclosive things, such as
their full names (“vanity searches”), their own social security
numbers (to see if their numbers are publicly available on
the web, possibly with a goal of detecting assess the threat
of identity theft), and even the combination of mother’s
maiden name and social security number. AOL carefully
redacted such obviously disclosive “personally identifiable
information,” and each user id was replaced by a random
string. However, search histories can be very idiosyncratic,
and a New York Times reporter correctly traced such an
“anonymized” search history to a specific resident of Geor-
gia.

In a linkage attack, released data are linked to other databases
or other sources of information. We use the term auxiliary
information to capture information about the respondents
other than that which is obtained through the (interactive
or non-interactive) statistical database. Any priors, beliefs,
or information from newspapers, labor statistics, and so on,
all fall into this category.

In a notable demonstration of the power of auxiliary in-
formation, medical records of the governor of Massachusetts
were identified by linking voter registration records to“anonymized”
Massachusetts Group Insurance Commission (GIC) medical
encounter data, which retained the birthdate, sex, and zip
code of the patient [21].

Despite this exemplary work, it has taken several years
to fully appreciate the importance of taking auxiliary in-
formation into account in privacy-preserving data release.
Sources and uses of auxiliary information are endlessly var-
ied. As a final example, it has been proposed to modify
search query logs by mapping all terms, not just the user
ids, to random strings. In token-based hashing each query is
tokenized, and then an uninvertible hash function is applied
to each token. The intuition is that the hashes completely
obscure the terms in the query. However, using a statis-
tical analysis of the hashed log and any (unhashed) query
log, for example, the released AOL log discussed above, the
anonymization can be severely compromised, showing that
token-based hashing is unsuitable for anonymization [16].

As we will see next, there are deep reasons for the fact
that auxiliary information plays such a prominent role in
these examples.

2. DALENIUS’S DESIDERATUM
In 1977 the statistician Tore Dalenius articulated an “ad

omnia” (as opposed to ad hoc) privacy goal for statistical
databases: anything that can be learned about a respondent
from the statistical database should be learnable without
access to the database. Although informal, this feels like the
“right” direction. The breadth of the goal captures all the
common intuitions for privacy. In addition, the definition
only holds the database accountable for whatever “extra”
is learned about an individual, beyond that which can be
learned from other sources. In particular, an extrovert who
posts personal information on the web may destroy her own
privacy, and the database should not be held accountable.

Formalized, Dalenius’ goal is strikingly similar to the gold
standard for security of a cryptosystem against a passive
eavesdropper, defined 5 years later. Semantic security cap-
tures the intuition that the encryption of a message reveals
no information about the message. This is formalized by
comparing the ability of a computationally efficient adver-
sary, having access to both the ciphertext and any auxiliary
information, to output (anything about) the plaintext, to
the ability of a computationally efficient party having access
only to the auxiliary information (and not the ciphertext), to
achieve the same goal [12]. Abilities are measured by prob-
abilities of success, where the probability space is over the
random choices made in choosing the encryption keys, the
ciphertexts, and by the adversaries. Clearly, if this differ-
ence is very, very tiny, then in a rigorous sense the ciphertext
leaks (almost) no information about the plaintext.

The formal definition of semantic security is a pillar of
modern cryptography. It is therefore natural to ask whether
a similar property, such as Dalenius’ goal, can be achieved
for statistical databases. But there is an essential difference
in the two problems. Unlike the eavesdropper on a conver-
sation, the statistical database attacker is also a user, that
is, a legitimate consumer of the information provided by the
statistical database (not to mention the fact that she may
also be a respondent in the database).

Many papers in the literature attempt to formalize Dale-
nius’ goal (in some cases unknowingly) by requiring that
the adversary’s prior and posterior views about an individ-
ual (i.e., before and after having access to the statistical
database) shouldn’t be “too different,” or that access to the
statistical database shouldn’t change the adversary’s views
about any individual“too much.” The difficulty with this ap-
proach is that if the statistical database teaches us anything
at all, then it should change our beliefs about individuals.
For example, suppose the adversary’s (incorrect) prior view
is that everyone has 2 left feet. Access to the statistical
database teaches that almost everyone has one left foot and
one right foot. The adversary now has a very different view
of whether or not any given respondent has two left feet.
But has privacy been compromised?

The last hopes for Dalenius’ goal evaporate in light of the
following parable, which again involves auxiliary informa-
tion. Suppose we have a statistical database that teaches
average heights of population subgroups, and suppose fur-
ther that it is infeasible to learn this information (perhaps
for financial reasons) in any other way (say, by conducting a

new study). Finally, suppose that one’s true height is con-
sidered sensitive. Given the auxiliary information “Turing
is two inches taller than the average Lithuanian woman,”
access to the statistical database teaches Turing’s height.
In contrast, anyone without access to the database, know-
ing only the auxiliary information, learns much less about
Turing’s height.

A rigorous impossibility result generalizes this argument,
extending to essentially any notion of privacy compromise,
assuming the statistical database is useful. The heart of
the attack uses extracted randomness from the statistical
database as a one-time pad for conveying the privacy com-
promise to the adversary/user [6].

Turing did not have to be a member of the database for
the attack described above to be prosecuted against him.
More generally, the things that statistical databases are de-
signed to teach can, sometimes indirectly, cause damage to
an individual, even if this individual is not in the database.

In practice, statistical databases are (typcially) created
to provide some anticipated social gain; they teach us some-
thing we could not (easily) learn without the database. To-
gether with the attack against Turing described above, and
the fact that he did not have to be a member of the database
for the attack to work, this suggests a new privacy goal:
minimize the increased risk to an individual incurred by
joining (or leaving) the database. That is, we move from
comparing an adversary’s prior and posterior views of an
individual to comparing the risk to an individual when in-
cluded in, versus when not included in, the database. This
makes sense. A privacy guarantee that limits risk incurred
by joining therefore encourages participation in the dataset,
increasing social utility. This is the starting point on our
path to differential privacy.

3. DIFFERENTIAL PRIVACY
Differential privacy will ensure that ability of an adver-

sary to inflict harm (or good, for that matter) – of any sort,
to any set of people – should be essentially the same, inde-
pendent of whether any individual opts in to, or opts out
of, the dataset. We will do this indirectly, simultaneously
addressing all possible forms of harm and good, by focussing
on the probability of any given output of a privacy mecha-
nism and how this probability can change with the addition
or deletion of any row. Thus, we will concentrate on pairs of
databases (D,D′) differing only in one row, meaning one is
a subset of the other and the larger database contains just
one additional row. Finally, to handle worst case pairs of
databases, our probabilities will be over the random choices
made by the privacy mechanism.

Definition 2. A randomized function K gives ε-differential
privacy if for all data sets D and D′ differing on at most one
row, and all S ⊆ Range(K),

Pr[K(D) ∈ S] ≤ exp(ε)× Pr[K(D′) ∈ S], (1)

where the probability space in each case is over the coin flips
of K.

The multiplicative nature of the guarantee implies that an
output whose probability is zero on a given database must
also have probability zero on any neighboring database, and
hence, by repeated application of the definition, on any
other database. Thus, Definition 1 trivially rules out the

subsample-and-release paradigm discussed above: for an in-
dividual x not in the dataset, the probability that x’s data
are sampled and released is obviously zero; the multiplica-
tive nature of the guarantee ensures that the same is true
for an individual whose data are in the dataset.

Any mechanism satisfying this definition addresses all con-
cerns that any participant might have about the leakage of
her personal information, regardless of any auxiliary infor-
mation known to an adversary: even if the participant re-
moved her data from the data set, no outputs (and thus
consequences of outputs) would become significantly more
or less likely. For example, if the database were to be con-
sulted by an insurance provider before deciding whether or
not to insure a given individual, then the presence or absence
of any individual’s data in the database will not significantly
affect her chance of receiving coverage.

Definition 2 extends naturally to group privacy. repeated
application of the definition bounds the ratios of probabili-
ties of outputs when a collection C of participants opts in or
opts out by a factor of e|C|ε. Of course, the point of the sta-
tistical database is to disclose aggregate information about
large groups (while simultaneously protecting individuals),
so we should expect privacy bounds to disintegrate with in-
creasing group size.

The parameter ε is public, and its selection is a social
question. We tend to think of ε as, say, 0.01, 0.1, or in some
cases, ln 2 or ln 3.

Sometimes, for example, in the census, an individual’s
participation is known, so hiding presence or absence makes
no sense; instead we wish to hide the values in an individual’s
row. Thus, we can (and sometimes do) extend “differing
in at most one row” to mean having symmetric difference
at most 1 to capture both possibilities. However, we will
continue to use Definition 2.

Returning to randomized response, we see that it yields
ε-differential privacy for a value of ε that depends on the
universe from which the rows are chosen and the probabil-
ity with which a random, rather than non-random, value
is contributed by the respondent. As an example, suppose
each row consists of a single bit, and that the respondent’s
instructions are to first flip an unbiased coin to determine
whether he will answer randomly or truthfully. If heads (re-
spond randomly), then the respondent is to flip a second
unbiased coin and report the outcome; if tails, the respon-
dent answers truthfully. Fix b ∈ {0, 1}. If the true value
of the input is b, then b is output with probability 3/4. On
the other hand, if the true value of the input is 1 − b, then
b is output with probability 1/4. The ratio is 3, yielding
(ln 3)-differential privacy.

Suppose n respondents each employ randomized response
independently, but using coins of known, fixed, bias. Then,
given the randomized data, by the properties of the binomial
distribution the analyst can appproximate the true answer
to the question “How many respondents have value b?” to
within an expected error on the order of Θ(

√
n). As we will

see, it is possible to do much better – obtaining constant
expected error, independent of n.

Generalizing in a different direction, suppose each row
now has two bits, each one randomized independently, as
described above. While each bit remains (ln 3)-differentially
private, their logical-AND enjoys less privacy. That is, con-
sider a privacy mechanism in which each bit is protected by
this exact method of randomized response, and consider the

query: “What is the logical-AND of the bits in the row of
respondent i (after randomization)?” If we consider the two
extremes, one in which respondent i has data 11 and the
other in which respondent i has data 00, we see that in the
first case the probability of output 1 is 9/16, while in the
second case the probability is 1/16. Thus, this mechanism
is at best (ln 9)-differentially private, not ln 3. Again, it is
possible to do much better, even while releasing the entire 4-
element histogram, also known as a contingency table, with
only constant expected error in each cell.

4. ACHIEVING DIFFERENTIAL PRIVACY
Achieving differential privacy revolves around hiding the

presence or absence of a single individual. Consider the
query “How many rows in the database satisfy property P?”
The presence or absence of a single row can affect the answer
by at most 1. Thus, a differentially private mechanism for
a query of this type can be designed by first computing the
true answer and then adding random noise according to a
distribution with the following property:

∀z, z′ s.t. |z − z′| = 1 : Pr[z] ≤ eε Pr[z′]. (2)

To see why this is desirable, consider any feasible response r.
For any m, if m is the true answer and the response is r then
then the random noise must have value r −m; similarly, if
m − 1 is the true answer and the response is r, then the
random noise must have value r −m + 1. In order for the
response r to be generated in a differentially private fashion,
it suffices for

e−ε ≤ Pr[noise = r −m]

Pr[noise = r −m+ 1]
≤ eε.

In general we are interested in vector-valued queries; for
example, the data may be points in Rd and we wish to
carry out an analysis that clusters the points and reports
the location of the largest cluster.

Definition 3. [7]For f : D → Rd, the L1 sensitivity of
f is

∆f = max
D,D′

‖f(D)− f(D′)‖1 (3)

= max
D,D′

d∑
i=1

|f(D)i − f(D′)i|

for all D,D′ differing in at most one row.

In particular, when d = 1 the sensitivity of f is the maximum
difference in the values that the function f may take on a
pair of databases that differ in only one row. This is the
difference our noise must be designed to hide. For now, let
us focus on the case d = 1.

The Laplace distribution with parameter b, denoted Lap(b),
has density function P (z|b) = 1

2b
exp(−|z|/b); its variance is

2b2. Taking b = 1/ε we have that the density at z is propor-

tional to e−ε|z|. This distribution has highest density at 0
(good for accuracy), and for any z, z′ such that |z − z′| ≤ 1
the density at z is at most eε times the density at z′, satisfy-
ing the condition in Equation 2. It is also symmetric about
0, and this is important. We cannot, for example, have a
distribution that only yields non-negative noise. Otherwise
the only databases on which a counting query could return
a response of 0 would be databases in which no row satis-
fies the query. Letting D be such a database, and letting

D′ = D ∪ {r} for some row r satisfying the query, the pair
D,D′ would violate ε-differential privacy. Finally, the dis-
tribution gets flatter as ε decreases. This is correct: smaller
ε means better privacy, so the noise density should be less
“peaked” at 0 and change more gradually as the magnitude
of the noise increases.

There is nothing special about the cases d = 1,∆f = 1:

Theorem 4. [7] For f : D → Rd, the mechanism K that
adds independently generated noise with distribution Lap(∆f/ε)
to each of the d output terms enjoys ε-differential privacy.

Before proving the theorem, we illustrate the situation for
the case of a counting query (∆f = 1) when ε = ln 2 and
the true answer to the query is 100. The distribution on
the outputs (in gray) is centered at 100. The distribution
on outputs when the true answer is 101 is shown in orange.

100 101 102 103 …999897…

Proof. (Theorem 4.) The proof is a simple generaliza-
tion of the reasoning we used to illustrate the case of a single
counting query.

Consider any subset S ⊆ Range(K), and let D,D′ be any
pair of databases differing in at most one row. When the
database is D, the probability density at any r ∈ S is pro-
portional to exp(−||f(D)−r||1(ε/∆f)). Similarly, when the
database is D′, the probability density at any r ∈ Range(K)
is proportional to exp(−||f(D′)− r||1(ε/∆f)).

We have

e−||f(D)−r||(ε/∆f)

e−||f(D′)−r||(ε/∆f)
=

e||f(D′)−r||(ε/∆f)

e||f(D)−r||(ε/∆f)

= e(||f(D′)−r||−||f(D)−r||)(ε/∆f)

≤ e(||f(D′)−f(D)||)(ε/∆f)

where the inequality follows from the triangle inequality. By
definition of sensitivity, ||f(D′)− f(D)||1 ≤ ∆f , and so the
ratio is bounded by exp(ε). Integrating over S yields ε-
differential privacy.

Given any query sequence f1, . . . , fm, ε-differential pri-
vacy can be achieved by running K with noise distribution
Lap(

∑m
i=1 ∆fi/ε) on each query, even if the queries are cho-

sen adaptively, with each successive query depending on the
answers to the previous queries. In other words, by allow-
ing the quality of each answer to deteriorate in a controlled
way with the sum of the sensitivities of the queries, we can
maintain ε-differential privacy.

With this in mind, let us return to some of the suggestions
we considered earlier. Recall that using the specific random-
ized response strategy described above, for a single Boolean
attribute, yielded error Θ(

√
n) on databases of size n and

(ln 3)-differential privacy. In contrast, using Theorem 4 with
the same value of ε, noting that ∆f = 1 vields a variance
of 2(1/ ln 3)2, or an expected error of

√
2/ ln 3. More gener-

ally, to obtain ε-differential privacy we get an expected error
of
√

2/ε. Thus, our expected error magnitude is constant,
independent of n.

What about two queries? The sensitivity of a sequence
of two counting queries is 2. Applying the theorem with

∆f/ε = 2/ε, adding independently generated noise dis-
tributed as Lap(2/ε) to each true answer yields ε-differential
privacy. The variance is 2(2/ε)2, or standard deviation 2

√
2/ε.

Thus, for any desired ε we can achieve ε-differential privacy
by increasing the expected magnitude of the errors as a func-
tion of the total sensitivity of the two-query sequence. This
holds equally for

• Two instances of the same query, addressing the re-
peated query problem;

• One count for each of two different bit positions, for
example, when each row consists of two bits;

• A pair of queries of the form: “How many rows satisfy
property P?” and “How many rows satisfy property
Q?” (where possibly P = Q); and

• An arbitrary pair of queries.

However, the theorem also shows we can sometimes do bet-
ter. The logical-AND count we discussed above, even though
it involves two different bits in each row, still only has sensi-
tivity 1: the number of 2-bit rows whose entries are both 1
can change by at most one with the addition or deletion
of a single row. Thus, this more complicated query can be
answered in an ε-differentially private fashion using noise
distributed as Lap(1/ε); we don’t need to use the distribu-
tion Lap(2/ε).

Histogram Queries.
The power of Theorem 4 really becomes clear when consid-

ering histogram queries, defined as follows. If we think of the
rows of the database as elements in a universe X, then a his-
togram query is a partitioning of X into an arbitrary num-
ber of disjoint regions X1, X2, . . . , Xd. The implicit ques-
tion posed by the query is: “For i = 1, 2, . . . , d, how many
points in the database are contained in Xi?” For example,
the database may contain the annual income for each re-
spondent, the query is a partitioning of incomes into ranges:
{[0, 50K), [50K, 100K), . . . ,≥ 500K}. In this case d = 11,
and the question is asking, for each of the d ranges, how
many respondents in the database have annual income in
the given range. This looks like d separate counting queries,
but the entire query actually has sensitivity ∆f = 1. To
see this, note that if we remove one row from the database,
then only one cell in the histogram changes, and that cell
only changes by 1; similarly for adding a single row. So The-
orem 4 says that ε-differential privacy can be maintained by
perturbing each cell with an independent random draw from
Lap(1/ε). Returning to our example of two-bit rows, we can
pose the 4-ary histogram query requesting, for each pair of
literals v1v2, the number of rows with value v1v2, adding
noise of order 1/ε to each of the four cells.

When Noise Makes No Sense.
There are times when the addition of noise for achieving

privacy makes no sense. For example, the function f might
map databases to strings, strategies, or trees, or it might
be choosing the “best” among some specific, not necessar-
ily continuous, set of real-valued objects. The problem of
optimizing the output of such a function while preserving
ε-differential privacy requires additional technology.

Assume the curator holds a database D and the goal is to
produce an object y. The exponential mechanism [18] works

as follows. We assume the existence of a utility function
u(D,y) that measures the quality of an output y, given that
the database is D. For example, the data may be a set of la-
beled points in Rd and the output y might be a d-ary vector
describing a (d−1)-dimensional hyperplane that attempts to
classify the points, so that those labeled with +1 have non-
negative inner product with y and those labeled with −1
have negative inner product. In this case the utility would
be the number of points correctly classified, so that higher
utility corresponds to a better classifier. The exponential
mechanism, E , outputs y with probability proportional to
exp(u(D, y)ε/∆u) and ensures ε-differential privacy. Here
∆u is the sensitivity of the utility function bounding, for all
adjacent databases (D,D′) and potential outputs y, the dif-
ference |u(D, y) − u(D′, y)|. In our example, ∆u = 1. The
mechanism assigns most mass to the best classifier, and the
mass assigned to any other drops off exponentially in the de-
cline in its utility for the current data set – hence the name
“exponential mechanism.”

When Sesitivity is Hard to Analyze.
The Laplace and exponential mechanisms provide a dif-

ferentially private interface through which the analyst can
access the data. Such an interface can be useful even when
it is difficult to determine the sensitivity of the desired func-
tion or query sequence; it can also be used to run an iterative
algorithm, composed of easily analyzed steps, for as many
iterations as a given privacy budget permits. This is a pow-
erful observation; for example, using only noisy sum queries,
it is possible to carry out many standard datamining tasks,
such as singular value decompositions, finding an ID3 deci-
sion tree, clustering, learning association rules, and learning
anything learnable in the statistical queries learning model,
frequently with good accuracy, in a privacy-preserving fash-
ion [2]. This approach has been generalized to yield a pub-
licly available codebase for writing programs that ensure
differential privacy [17].

k-Means Clustering.
As an example of “private programming” [2], consider k-

means clustering, described first in its usual, non-private
form. The input consists of points p1, . . . , pn in the d-dimensional
unit cube [0, 1]d. Initial candidate means µ1, . . . , µk are cho-
sen randomly from the cube and updated as follows:

1. Partition the samples {pi} into k sets S1, . . . , Sk,
associating each pi with the nearest µj .

2. For 1 ≤ j ≤ k, set µ′j =
∑

i∈Sj
pi/|Sj |, the mean of

the samples associated with µj .

This update rule is typically iterated until some convergence
criterion has been reached, or a fixed number of iterations
have been applied.

Although computing the nearest mean of any one sample
(Step 1) would breach privacy, we observe that to compute
an average among an unknown set of points it is enough to
compute their sum and divide by their number. Thus, the
computation only needs to expose the approximate cardi-
nalities of the Sj , not the sets themselves. Happily, the k
candidate means implicitly define a histogram query, since
they partition the space [0, 1]d according to their Voronoi
cells, and so the vector (|S1|, . . . , |Sk|) can be released with

very low noise in each coordinate. This gives us a differen-
tially private approximation to the denominators in Step 2.
As for the numerators, the sum of a subset of the pi has sen-
sitivity at most d, since the points come from the bounded
region [0, 1]d. Even better, the sensitivity of the d-ary func-
tion that returns, for each of the k Voronoi cells, the d-ary
sum of the points in the cell is at most d: adding or deleting
a single d-ary point can affect at most one sum, and that
sum can change by at most 1 in each of the d dimensions.
Thus, using a query sequence with total sensitivity at most
d+1, the analyst can compute a new set of candidate means
by dividing, for each µj , the approximate sum of the points
in Sj by the approximation to the cardinality |Sj |.

If we run the algorithm for a fixed number N of iterations
we can use the noise distribution Lap((d+ 1)N/ε) to obtain
ε-differentialy privacy. If we don’t know the number of iter-
ations in advance we can increase the noise parameter as the
computation proceeds. There are many ways to do this. For
example, we can answer in the first iteration with parameter
(d+ 1)(ε/2), in the next with parameter (d+ 1)(ε/2), in the
next with parameter (d+1)(ε/4), and so on, each time using
up half of the remaining “privacy budget.”

5. GENERATING SYNTHETIC DATA
The idea of creating a synthetic data set whose statis-

tics closely mirror those of the original data set, but which
preserves privacy of individuals, was proposed in the statis-
tics community no later than 1993 [20]. The lower bounds
on noise discussed at the end of Section 1.1 imply that no
such data set can safely provide very accurate answers to
too many weighted subset sum questions, motivating the in-
teractive approach to private data analysis discussed herein.
Intuitively, the advantage of the interactive approach is that
only the questions actually asked receive responses.

Against this backdrop, the non-interactive case was re-
visited from a learning theory perspective, challenging the
interpretation of the noise lower bounds as a limit on the
number of queries that can be answered privately [3]. This
work, described next, has excited interest in solutions yield-
ing noise in the range [ω(

√
n), o(n)].

Let X be a universe of data items and C be a concept
class consisting of functions c : X → {0, 1}. We say x ∈
X satisfies a concept c ∈ C if and only if c(x) = 1. A
concept class can be extremely general; for example, it might
consist of all rectangles in the plane, or all Boolean circuits
containing a given number of gates.

Given a sufficiently large database D ∈ Xn, it is possible
to privately generate a synthetic database that maintains
approximately correct fractional counts for all concepts in
C (there may be infinitely many!). That is, letting S de-
note the synthetic database produced, with high probability
over the choices made by the privacy mechanism, for every
concept c ∈ C, the fraction of elements in S that satisfy c
is approximately the same as the fraction of elements in D
that satisfy c.

The minimal size of the input database depends on the
quality of the approximation, the logarithm of the cardi-
nality of the universe X, the privacy parameter ε, and the
Vapnick-Chervonenkis dimension of the concept class C (for
finite |C| this is at most log2 |C|). The synthetic dataset,
chosen by the exponential mechanism, will be a set of m =
O(VCdim(C)/γ2), elements in X (γ governs the maximum
permissible inaccuracy in the fractional count.) Letting D

denote the input dataset and D̂ a candidate synthetic dataset,
the utility function for the exponential mechanism is given
by

u(D, D̂) = −max
h∈C

∣∣∣h(D)− n

m
h(D̂)

∣∣∣ .
6. PAN-PRIVACY

Data collected by a curator for a given purpose may be
subject to “mission creep” and legal compulsion, such as a
subpoena. Of course, we could analyze data and then throw
it away, but can we do something even stronger, never stor-
ing the data in the first place? Can we strengthen our notion
of privacy to capture the “never store” requirement?

These questions suggest an investigation of differentially
private streaming algorithms with small state – much too
small to store the data. However, nothing in the definition of
a streaming algorithm, even one with very small state, pre-
cludes storing a few individual data points. Indeed, popular
techniques from the streaming literature, such as Count-Min
Sketch and subsampling, do precisely this. In such a situa-
tion, a subpoena or other intrusion into the local state will
breach privacy.

A pan-private algorithm is private “inside and out,” re-
maining differentially private even if its internal state be-
comes visible to an adversary [9]. To understand the pan-
privacy guarantee, consider click stream data. These data
are generated by individuals, and an individual may appear
many times in the stream. Pan-privacy requires that any two
streams differing only in the information of a single individ-
ual should produce very similar distributions on the internal
states of the algorithm and on its outputs, even though the
data of an individual are interleaved arbitrarily with other
data in the stream.

As an example, consider the problem of density estima-
tion. Assuming, for simplicity, that the data stream is just a
sequence of IP addresses in a certain range, we wish to know
what fraction of the set of IP addresses in the range actually
appears in the stream. A solution inspired by randomized
response can be designed using the following technique [9].

Define two probability distributions, D0 and D1, on the
set {0, 1}. D0 assigns equal mass to zero and to one. D1 has
a slight bias towards 1; specifically, 1 has mass 1/2 + ε/4,
while 0 has mass 1/2− ε/4.

Let X denote the set of all possible IP addresses in the
range of interest. The algorithm creates a table, with a one-
bit entry bx for each x ∈ X, initialized to an independent
random draw from D0. So initially the table is roughly half
zeroes and half ones.

In an atomic step, the algorithm receives an element from
the stream, changes state, and discards the element. When
processing x ∈ X, the algorithm makes a fresh random draw
from D1, and stores the result in bx. This is done no matter
how many times x may have appeared in the past. Thus,
for any x appearing at least once, bx will be distributed
according to D1. However, if x never appears, then the
entry for x is the bit drawn according to D0 during the
initialization of the table.

As with randomized response, the density in X of the
items in the stream can be approximated from the number of
1’s in the table, taking into account the expected fraction of
“false positives” from the initialization phase and the “false
negatives” when sampling from D1. Letting θ denote the
fraction of entries in the table with value 1, the output is

4(θ − 1/2)/ε+ Lap(1/ε|X|).
Intuitively, the internal state is differentially private be-

cause, for each b ∈ {0, 1}, e−ε ≤ PrD1 [b]/PrD0 [b] ≤ eε; pri-
vacy for the output is ensured by the addition of Laplacian
noise. Over all, the algorithm is 2ε-differentially pan-private.

7. CONCLUSIONS
The differential privacy frontier is expanding rapidly, and

there is insufficient space here to list all the interesting direc-
tions currently under investigation by the community. We
identify a few of these.

The Geometry of Differential Privacy. Sharper upper and
lower bounds on noise required for achieving differential pri-
vacy against a sequence of linear queries can be obtained by
understanding the geometry of the query sequence [13]. In
some cases dependencies among the queries can be exploited
by the curator to markedly improve the accuracy of the re-
sponses. Generalizing this investigation to the non-linear
and interactive cases would be of significant interest.

Algorithmic Complexity. We have so far ignored questions
of computational complexity. Many, but not all, of the tech-
niques described here have efficient implementations. For
example, there are instances of the synthetic data generation
problem that, under standard cryptographic assumptions,
have no polynomial time implementation [10]. It follows
that there are cases in which the exponential mechanism
has no efficient implementation. When can this powerful
tool be implemented efficiently, and how?

An Alternative to Differential Privacy? Is there an alter-
native, “ad omnia,” guarantee that composes automatically,
and permits even better accuracy than differential privacy?
Can cryptography be helpful in this regard [19]?

The work described herein has, for the first time, placed
private data analysis on a strong mathematical foundation.
The literature connects differential privacy to decision the-
ory, economics, robust statistics, geometry, additive combi-
natorics, cryptography, complexity theory learning theory,
and machine learning. Differential privacy thrives because
it is natural, it is not domain-specific, and it enjoys fruitful
interplay with other fields. This flexibility gives hope for
a principled approach to privacy in cases, like private data
analysis, where traditional notions of cryptographic security
are inappropriate or impracticable.

8. REFERENCES
[1] N. R. Adam and J. Wortmann. Security-control

methods for statistical databases: A comparative
study. ACM Computing Surveys, 21:515–556, 1989.

[2] A. Blum, C. Dwork, F. McSherry, and K. Nissim.
Practical privacy: The SuLQ framework. In Proc. 24th
ACM Symposium on Principles of Database Systems,
pages 128–138, 2005.

[3] A. Blum, K. Ligett, and A. Roth. A learning theory
approach to non-interactive database privacy. In Proc.
40th ACM SIGACT Symposium on Thoery of
Computing, pages 609–618, 2008.

[4] D. E. Denning. Secure statistical databases with
random sample queries. ACM Transactions on
Database Systems, 5:291–315, 1980.

[5] I. Dinur and K. Nissim. Revealing information while
preserving privacy. In Proc. 22nd ACM Symposium on
Principles of Database Systems, pages 202–210, 2003.

[6] C. Dwork. Differential privacy. In Proc. 33rd
International Colloquium on Automata, Languages
and Programming (ICALP)(2), pages 1–12, 2006. See
also: C. Dwork and M. Naor, On the difficulties of
disclosure prevention in statistical databases, in
submission.

[7] C. Dwork, F. McSherry, K. Nissim, and A. Smith.
Calibrating noise to sensitivity in private data
analysis. In Proc. 3rd Theory of Cryptography
Conference, pages 265–284, 2006.

[8] C. Dwork, F. McSherry, and K. Talwar. The price of
privacy and the limits of lp decoding. In Proc. 39th
ACM Symposium on Theory of Computing, pages pp.
85–94, 2007.

[9] C. Dwork, M. Naor, T. Pitassi, G. Rothblum, and
S. Yekhanin. Pan-private streaming algorithms. In
Proc. 1st Symposium on Innovations in Computer
Science, 2010.

[10] C. Dwork, M. Naor, O. Reingold, G. Rothblum, and
S. Vadhan. When and how can privacy-preserving
data release be done efficiently? In Proc. 41st
International ACM Symposium on Theory of
Computing, pages 381–390, 2009.

[11] C. Dwork and K. Nissim. Privacy-preserving
datamining on vertically partitioned databases. In
Advances in Cryptology – CRYPTO’04, pages
528–544, 2004.

[12] S. Goldwasser and S. Micali. Probabilistic encryption.
JCSS, 28:270–299, 1984.

[13] M. Hardt and K. Talwar. On the geometry of
differential privacy. arXiv:0907.3754v2, 2009.

[14] K. Kenthapadi, N. Mishra, and K. Nissim. Simulatable
auditing. In Proc. 24th ACM Symposium on
Principles of Database Systems, pages 118–127, 2005.

[15] J. Kleinberg, C. Papadimitriou, and P. Raghavan.
Auditing boolean attributes. In Proc. 19th ACM
Symposium on Principles of Database Systems, pages
86–91, 2000.

[16] R. Kumar, J. Novak, B. Pang, and A. Tomkins. On
anonymizing query logs via token-based hashing. In
Proc. WWW 2007, pages 629–638, 2007.

[17] F. McSherry. Privacy integrated queries (codebase).
available on Microsoft Research downloads website.
See also pages 19-30, Proc. SIGMOD 2009.

[18] F. McSherry and K. Talwar. Mechanism design via
differential privacy. In Proc. 48th Annual Symposium
on Foundations of Computer Science, 2007.

[19] I. Mironov, O. Pandey, O. Reingold, and S. Vadhan.
Computational differential privacy. In Advances in
Cryptology – CRYPTO’09, pages 126–142, 2009.

[20] D. Rubin. Discussion: Statistical disclosure limitation.
Journal of Official Statistics, 9:462–468, 1993.

[21] L. Sweeney. Weaving technology and policy together
to maintain confidentiality. J. Law Med. Ethics,
25:98–110, 1997.

[22] S. Warner. Randomized response: a survey technique
for eliminating evasive answer bias. JASA, pages
63–69, 1965.

